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Abstract
The topic of exercise-induced oxidative stress has received considerable attention in recent years,
with close to 300 original investigations published since the early work of Dillard and colleagues in
1978. Single bouts of aerobic and anaerobic exercise can induce an acute state of oxidative stress.
This is indicated by an increased presence of oxidized molecules in a variety of tissues. Exercise
mode, intensity, and duration, as well as the subject population tested, all can impact the extent of
oxidation. Moreover, the use of antioxidant supplements can impact the findings. Although a single
bout of exercise often leads to an acute oxidative stress, in accordance with the principle of
hormesis, such an increase appears necessary to allow for an up-regulation in endogenous
antioxidant defenses. This review presents a comprehensive summary of original investigations
focused on exercise-induced oxidative stress. This should provide the reader with a well-
documented account of the research done within this area of science over the past 30 years.

Background
Oxidative stress is a condition in which the delicate bal-
ance existing between prooxidant (free radicals) produc-
tion and their subsequent amelioration via the
antioxidant defense system becomes skewed in favor of
free radical expression [1]. The production or formation
of free radicals in vivo is primarily initiated by the con-
sumption of molecular oxygen, which, due to its structure
is in fact a radical species itself [1]. A free radical is any spe-
cies capable of existence, containing one or more
unpaired electrons [2]. Although a multitude of free radi-
cals exist [hydrogen atoms, transition metal ions, carbon
centered radicals (e.g., trichloromethyl), sulfur centered
radicals (e.g., thiyl)] [2], those derived from either oxygen
and/or nitrogen represent the most important class of rad-
icals generated in living systems [3,4]. Both the radicals
themselves as well as the nonradical species created via
interaction with free radicals are collectively referred to as

reactive oxygen/nitrogen species (RONS) [5]. The body's
antioxidant defense system serves to protect the cells from
excess RONS production and is comprised of both endog-
enous (bilirubin, uric acid, superoxide dismutases, cata-
lase, glutathione peroxidase, etc.) and exogenous
(carotenoids, tocopherols, ascorbate, bioflavonoids, etc.)
compounds [6]. The exogenous compounds are con-
sumed in the diet and come primarily from ingestion of
fruits and vegetables [7].

It is clear that a basal level of RONS production and
removal is constantly occurring, in turn eliciting both pos-
itive and negative effects on physiological function. In liv-
ing systems, this delicate balance eluded to above (free
radical production vs. antioxidant defense) serves to
determine the intracellular redox state [8], which in turn
plays a role in optimizing cellular function. The redox
state and/or redox balance is representative of the oxida-
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tion/reduction potential present within the cell and is
tightly regulated similar to that of pH, and is commonly
assessed via the ratio between reduced (GSH) and oxi-
dized (GSSG) glutathione (the major non-enzymatic anti-
oxidant) or other thiol/disulfide compounds [5].
Mammalian cells are endowed with signaling pathways
that are sensitive to the intracellular redox environment
and can be activated by oxidative stress [9]. Thus, transient
disturbances in redox balance, causing a shift towards a
more oxidizing environment, can occur via increased
RONS production and/or decreased antioxidant defense
and appear to serve as a "signal" for the activation of sev-
eral cell signaling mechanisms important for optimal
physiological function [10]. Examples of specific redox-
sensitive regulated functions and their associated signal-
ing mechanism include, but are not limited to: 1) regula-
tion of vascular tone via activation of guanylate cyclase
[11] or the transcriptional/posttranscriptional regulation
of nitric oxide synthase (NOS) via activation of nuclear
factor κB (NF-κB) or mitogen-activated protein kinases
(MAPK) [12]; 2) Amplification of immune responses and
apoptosis via activation of activator protein 1 (AP-1) and
NF-κB transcription factors in human T cells [13,14]; 3)
Regulation of insulin receptor kinase activity via increased
activity of protein tyrosine phosphotases [15]; and 4)
Increased expression of antioxidant enzymes and/or glu-
tathione in response to MAPK and NF-κB activation in an
effort to restore redox balance [9]. The latter example is
particularly applicable to exercise, as an increase in RONS
during and following acute exercise is believed to serve as
the necessary "signal" for the hormetic-associated upregu-
lation in antioxidant defense commonly observed with
chronic exercise training, and will be discussed further
later in this review. The above examples are offered in an
effort to provide a brief overview of the importance of
RONS in physiological function. However, a thorough
discussion of the role of RONS in gene expression and cel-
lular control is beyond the scope of this review. For more
information the reader is referred to a few excellent
reviews within the area [8-10,16].

While a shift in the redox state in favor of RONS expres-
sion is indeed needed to initiate such signaling pathways,
execution of such signals are contingent upon a return to
reducing conditions [10]. Therefore, conditions that favor
accelerated and/or chronic production of RONS may serve
to overwhelm the capacity of the antioxidant defense sys-
tem in place, thereby disrupting normal redox-sensitive
signaling and causing a permanent shift in redox balance
[10]. Moreover, this permanent shift in the redox environ-
ment could then induce damaging effects via direct
RONS-mediated oxidative damage to nucleic acids, lipids
and proteins [17], as well as through changes in gene
expression that promote apoptosis within healthy cells,
and systemic inflammation [16]. Both moderate and

excessive shifts in redox potential, resulting from chronic
oxidative stress have been suggested to play a role in the
functional decline commonly observed with aging, as well
as in the pathophysiology of several diseased states,
respectively [10,16]. In fact, oxidative stress has been sug-
gested to play a primary or secondary role in the develop-
ment of multiple (> 100) acute and chronic human
diseases [17]. To summarize, RONS are not inherently
harmful; however, in response to chronic exposure to
excessive and/or ectopic production of RONS, the system
can become unbalanced (free radicals > defenses), poten-
tially resulting in a shift in the intracellular redox balance
towards a more oxidizing environment, in turn promot-
ing oxidative damage, inflammation, ill-health, and dis-
ease.

Overproduction of RONS can result from a variety of
stressors, such as exposure to environmental pollutants
[2], excessive nutrient intake [18], or physical exercise
[19]. However, simply stated, any situation in which the
consumption of oxygen is increased, as during physical
exercise, could result in an acute state of oxidative stress.
Primary RONS generation in response to acute exercise
can occur via several pathways. These include mitochon-
drial respiration (electron leakage from electron transport
chain and subsequent production of the superoxide radi-
cal), prostanoid metabolism, the autooxidation of cate-
choloamines, and oxidase enzymatic activity (NAD(P)H
oxidase, xanthine oxidase) [20]. The initial increase in
RONS during exercise, as well as following cessation of
the work bout can lead to additional secondary genera-
tion of prooxidants via phagocytic respiratory burst, a loss
of calcium homeostasis and/or the destruction of iron-
containing proteins [20]. Moreover, while the pathways
listed above represent potential sources of RONS during
exercise, specific RONS generation likely depends on the
mode (aerobic, anaerobic), intensity, and duration of
exercise, as varying types of exercise differ in their respec-
tive energy requirements, levels of oxygen consumption,
and mechanical stresses imposed on the tissues [20].
These potential sites of RONS generation during exercise
can be viewed in Figure 1.

Since the initial finding of increased lipid peroxidation
following acute aerobic exercise in 1978 [21], the field of
oxidative stress and exercise has expanded substantially,
evident by the numerous original investigations con-
ducted over the past 30 years. This increased interest is
fueled by several factors, including the enhanced aware-
ness of the role of RONS in human disease, a greater effort
to promote exercise as a means for the improvement and/
or maintenance of health, as well as the widespread devel-
opment and availability of various antioxidant agents (of
which efficacy is often tested using exercise as a stimulus
of RONS). Although much of the early work has viewed
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Potential mechanisms of increased RONS production related to an acute bout of exerciseFigure 1
Potential mechanisms of increased RONS production related to an acute bout of exercise. Adapted with permis-
sion from Bloomer RJ, & Goldfarb AH. Anaerobic exercise and oxidative stress: A review. Canadian Journal of Applied Physiology, 
29(3): 245–263, 2004.
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exercise-induced RONS production as a potential detri-
ment to physiological function (i.e., decreased perform-
ance and immune function, and increased fatigue), more
recent work is investigating an alternative role for RONS
production in regards to favorable exercise-induced adap-
tations.

Much of the advances in the field have been made possi-
ble by substantial improvements in measurement tech-
niques over the past 30 years, as well as the fact that many
analytical tools needed for this work are more user-
friendly and readily available than ever before. Since the
initial discoveries of Dilliard and colleagues [21], several
commercial assay kits have been made available for the
measurement of oxidative stress, with many new kits
emerging each year. Furthermore, the discovery and utili-
zation of F2-isoprostanes, a prostaglandin like compound,
measured via gas chromotomography mass spectrometry
has emerged as a substantially more reliable and valid
measure of lipid peroxidation [22]. Newly developed
ELISA kits for both isoprostanes as well as protein carbo-
nyls are also now available, proving an opportunity for a
more widespread use of these biomarkers.

In regards to measurement of oxidative stress, due to the
high reactivity and relatively short half lives (e.g., 10-5, 10-

9 seconds for superoxide radical and hydroxyl radical,
respectively) of RONS, direct measurement is extremely
difficult to employ. However, direct assessment of free
radical production is possible via electron spin resonance
spectroscopy (ESR) involving spin traps, as well as two
other less common techniques such as radiolysis and laser
flash photolysis [23]. ESR works by recording the energy
changes that occur as unpaired electrons align in response
to a magnetic field [1]. Due to the high cost of such equip-
ment and the high degree of labor associated with each
direct method, the majority of free radial research related
to exercise has utilized indirect methods for the assess-
ment of resultant oxidative stress.

Indirect assessment of oxidative stress involves the meas-
urement of the more stable molecular products formed
via the reaction of RONS with certain biomolecules. Com-
mon molecular products include stable metabolites (e.g.,
nitrate/nitrite), and/or concentrations of oxidation target
products, including lipid peroxidation end products [iso-
prostanes, malondialdehyde (MDA), thiobarbituric acid
reactive substances (TBARS), lipid hydroperoxides
(LOOH), conjugated dienes (CD), oxidized low density
lipoprotein (oxLDL)], oxidized proteins [protein carbon-
yls (PC), individual oxidized amino acids, nitrotyrosine
(NT)], and nucleic acids [8-hydroxy-2-deoxyguanosine
(8-OHdG), oxidized DNA bases (via the Comet Assay),
strand breaks] [17]. Additionally, oxidative stress can be
measured by observing alterations in the body's antioxi-

dant defense system. This is typically done by measuring
the redox changes in the major endogenous antioxidant
glutathione, as well as circulating levels of vitamin E, and
vitamin C. Moreover, the activity of certain antioxidant
enzymes [e.g., superoxide dismutase (SOD), glutathione
peroxidase (GPx), catalase (CAT), glutathione reductase
(GR)] can be assessed as indicators of the oxidative stress
imposed on the tissue. Numerous antioxidant capacity
assays also exist and include: Trolox Equivalent Antioxi-
dant Capacity (TEAC), Total Antioxidant Status (TAS),
Ferric Reducing Ability of Plasma (FRAP), Total Radical-
Trapping Antioxidant Parameter (TRAP), and Oxygen
Radical Absorbance Capacity (ORAC).

Evidence for increased RONS production during and fol-
lowing exercise is provided by numerous investigations
noting an increase in various oxidative stress biomarkers
following both acute aerobic (for review, see [19]) and
anaerobic exercise (for review, see [24]). In addition,
direct measurement of free radical production via electron
spin resonance following acute exercise in animals [25]
and humans [26-30] has also been reported.

From work over the past three decades, it is clear that exer-
cise of sufficient volume, intensity, and duration can lead
to an increase in RONS production, which may lead to the
oxidation of several biological molecules (lipids, proteins,
nucleic acids). Whether or not this condition is indicative
of a harmful stimulus however, remains a topic of debate
[19,31]. That is, due to the potential role of RONS in
impairing exercise performance via altering contractile
function and/or accelerating muscle damage/fatigue (sec-
ondary to the oxidation of contractile and/or mitochon-
drial enzymes) [32-34], coupled with their association
with human disease [17], exercise-induced RONS have
commonly been viewed as a detriment to physiological
function. Hence, methods to reduce radical production
and subsequent oxidative damage during and following
physical exercise have been a priority of much research
activity. While excessive prooxidant production, arising
from any form of extreme aerobic or anaerobic exercise
(i.e., marathon, aerobic/anaerobic overtraining) may
have the potential to result in significant cellular disrup-
tion, there presently exist no "cause and effect" data to
indicate that such an increase in RONS resulting from
acute exercise actually causes ill-health and disease. To the
contrary, and in accordance with the principle of horme-
sis, a low grade oxidative stress appears necessary for vari-
ous physiological adaptations [35-37]. Such a repeated
exposure of the system to increased RONS production
from chronic exercise training leads to an upregulation in
the body's antioxidant defense system [38,39] and associ-
ated shift in redox balance in favor of a more reducing
environment, thus providing adaptive protection from
RONS during subsequent training sessions, as well as
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when exposed to non-exercise related conditions. Taken
together, exercise-induced oxidative stress may operate in
a similar fashion to all other principles of exercise science.
That is, in order for an adaptation to occur (e.g., increased
antioxidant defense, hypertrophy, strength), the physio-
logical stimulus applied (in this case RONS production)
must exceed a certain minimal threshold, effectively over-
loading the system. If overload is achieved, the physiolog-
ical capacity of the body will expand or adapt; ultimately
leading to improvements in health and/or human per-
formance.

This review is intended to provide a comprehensive sum-
mary of original investigations focused on exercise-
induced oxidative stress over the past 30 years. It presents
data from close to 300 original investigations separated by
aerobic and anaerobic exercise modes. Detailed tables
inclusive of the tissues studied and individual times of
measurement for each sample are provided (see Addi-
tional file 1). In an attempt to identify the relevant litera-
ture, a comprehensive search was performed using
PubMed and Google Scholar. The following search terms
were included in multiple combinations: oxidative stress
and exercise, oxidative stress and aerobic exercise, oxida-
tive stress and anaerobic exercise, oxidative stress and
resistance exercise. Further PubMed searching was per-
formed by selecting the "See all related articles" function,
thus providing an additional extensive list of publica-
tions. Further searching was performed by manual scan-
ning of the reference lists of several review articles, as well
as original investigations. The search was conducted
between October and December 2007. Although we
believe to have identified the bulk of original investiga-
tions within this area by using the above techniques,
admittedly, some investigations may have escaped our
search and are therefore not included. We apologize to
those authors whose work is not cited here.

Overview/limitations of oxidative stress and acute exercise 
research
Prior to the discussion of the collective results of the rela-
tive studies, it is imperative to understand some basic lim-
itations of research in the area of oxidative stress and acute
exercise. The multiple body systems, inclusive of the anti-
oxidant defense system, function in a complex and vastly
interconnected fashion. Therefore, concrete conclusions
regarding precisely how and why RONS are produced dur-
ing exercise, remains a topic of continued study. To claim
a complete understanding of these processes at this time
may largely underestimate the complexity of the human
body and associated redox systems. This simply means
that current understandings and findings relative to RONS
and acute exercise should remain open to further interpre-
tation and discovery. Of course, a key element involved in
the progression of a given scientific area is a clear under-

standing and familiarization with current findings and
beliefs. It is the intent of this review to provide such infor-
mation.

Currently, it is clear that both acute aerobic [25-27] and
anaerobic [28-30] exercise has the potential to result in
increased free radical production, which may or may not
result in acute oxidative stress. As stated earlier, in order
for oxidative stress to occur, the RONS produced during
exercise must exceed the antioxidant defense system
present, thereby resulting in oxidative damage to specific
biomolecules [40]. Different exercise protocols may
induce varying levels of RONS production, as oxidative
damage has been shown to be both intensity [41,42] and
duration [43] dependent. During low-intensity and dura-
tion protocols, antioxidant defenses appear sufficient to
meet the RONS production, but as intensity and/or dura-
tion of exercise increases, these defenses are no longer
adequate, potentially resulting in oxidative damage to sur-
rounding tissues [44]. Other factors appear to impact the
degree of antioxidant defenses present, including age [45],
training status [38,39], and dietary intake [7]. If oxidative
stress does occur, detection depends to a large degree on
the tissue sampled, the timing of a given sample, as well
as the sensitivity and specificity of the biomarker chosen
[17]. Significant or null findings may be related to the lack
of specificity of the chosen biomarker (as has been sug-
gested for TBARS [46]), improper sampling protocol (too
few measures or too short time course), or improper tissue
(blood or urine vs. skeletal muscle). Under these circum-
stances, it is possible that in investigations where oxida-
tive stress was not observed following acute exercise,
oxidative stress may have occurred prior to or after sample
collection or in tissue (e.g., skeletal muscle, cardiac, liver,
brain) other than that which was sampled (most com-
monly blood). Taken together, it appears that several fac-
tors influence both the onset of oxidative stress (intensity
and duration of exercise, age, training status and dietary
intake of subjects) as well as the detection of such stress in
vivo (biomarker chosen, tissue sampled, timing of sam-
pling). These variables may partially explain some of the
inconsistency present within the literature.

Acute aerobic exercise: human studies
The majority of research in the area of oxidative stress and
acute exercise in humans has utilized aerobic exercise pro-
tocols (> 160 original investigations). Typical protocols
have included submaximal or maximal effort aerobic
exercise either on a treadmill or cycle ergometer, with the
majority of investigations utilizing a graded exercise test
(GXT) to induce an oxidant stress. Most laboratory based
protocols have involved short to moderate duration exer-
cise bouts (≤ 2 hours), while a few laboratory protocols,
and the more common "field" tests, have included much
longer times of exercise (> 2 hours). In addition, some
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treadmill studies have focused on downhill running,
involving eccentric bias in order to induce muscle injury.
For the purpose of this review, as a means of classification,
all exercise protocols discussed in the text will be referred
to as maximal or submaximal, as detailing each specific
protocol would not be practical due to the variation
within each study design. Results will be discussed relative
to each specific biomarker utilized, with the initial section
providing a brief illustration of the nature of each biomar-
ker that can be referred to throughout for clarification pur-
poses. Studies involving non-eccentric aerobic exercise
without antioxidant supplementation will be discussed
below and can be viewed in Table 1 of Additional file 1.

Short to moderate duration protocols
Lipid peroxidation
The most common method utilized to indicate exercise
induced oxidative damage in regards to non-eccentric aer-
obic exercise has been the assessment of lipid peroxida-
tion, with malondialdehyde (MDA) and thiobarbituric
acid reactive substances (TBARS) representing the most
commonly used assays. Malondialdehyde is a three car-
bon chain aldehyde produced during decomposition of a
lipid hydroperoxide. Additionally, thiobarbituric acid
reactive substances (TBARS) is an assay used to measure
aldehyde products (primarily MDA) formed via decom-
position of lipid hydroperoxides. However, the TBARS
assay lacks specificity, for in addition to aldehydes, TBA
also can react with several other biological molecules
(such as carbohydrates, sialic acid, or prostaglandins),
thus interfering with the assay [46]. Further evidence for
the lack of specificity of the assay is evident by the fact that
the majority of authors have noted an increase in TBARS
following a variety of exercise protocols, whereas null
findings appear much more common when measuring
MDA or isoprostanes specifically.

Numerous studies have reported an increase in TBARS fol-
lowing both maximal [47-55] and submaximal [56-63]
exercise in humans, with values typically returning to
baseline within one hour post exercise [48,50], unless
maximal exercise is preceded by a submaximal stimuli of
sufficient intensity and duration [52]. In opposition to
these findings, a few studies have reported no increase in
TBARS despite the use of similar maximal [64-67] and
submaximal [68-71] protocols.

In regards to the measurement of MDA specifically, an
apposing trend is evident, thus drawing further suspicion
to the specificity of the TBARS assay. The majority of stud-
ies have noted no increase in MDA following maximal
[72-81] or submaximal [82-90] exercise, with fewer inves-
tigations reporting a significant increase [27,91-100].
However, those studies reporting significant increases typ-
ically utilized maximal (GXT) [27,91-96,100] or near

maximal (~75%VO2max) [97-99] exercise protocols, indi-
cating a role of intensity in MDA formation.

Other markers of lipid peroxidation have included meas-
urement of the susceptibility of LDL cholesterol to
undergo oxidation in vitro (reported as a decrease in lag
time to oxidation), accumulation of other lipid peroxida-
tion products such as conjugated dienes (CD), and lipid
hydroperoxides (LOOH), as well as breath analysis of cer-
tain hydrocarbons, such as pentane and ethane. To our
knowledge, all investigations involving acute aerobic exer-
cise, when measuring expired hydrocarbons
[21,73,97,101], or the susceptibility of LDL cholesterol to
undergo oxidation in vitro [94,95,102,103], have noted a
unanimous increase. No change [102,104] or an increase
[105] has been observed in CD following a GXT. Similar
to CD, results regarding measurement of LOOH have
been varied, with some studies noting an increase
[27,60,79,88,93] or no change [75,104,106-111] post
exercise.

In relation to our discussion of lipid peroxidation, it
should be noted that F2-isoprostanes, a prostaglandin-like
compound generated in vivo by non-enzymatic peroxida-
tion of arachidonic acid (an omega-6 fatty acid present in
the phospholipids of cell membranes), is regarded as the
most reliable approache for the assessment of free radical
mediated lipid peroxidation [17]. Although much more
involved and time consuming than the above methods,
the specificity is much greater. A detailed discussion of the
measurement technique for F2-isoprostanes has been pre-
sented recently by Milne and coworkers [112]. Increased
concentrations of F2-isoprostanes have been reported by a
few investigators [42,113], with increases responding in
an intensity dependent manner [42]. Null findings have
also been reported [114,115]; however, these results were
likely due to a low intensity protocol (50%VO2max) [114]
or the fact that subjects were considered to be trained ath-
letes [115] and likely "protected" from RONS due to an
enhanced endogenous antioxidant defense system.

Glutathione
In addition to lipid peroxidation, the measurement of
redox changes in glutathione (the major non-enzymatic
endogenous antioxidant) has also been routinely per-
formed as a representation of exercise induced oxidative
stress. Typically, a decrease in reduced glutathione (GSH)
[48-50,52,53,56,58,70,82,86,88,99,106,108,115-120],
an increase in oxidized glutathione (GSSG)
[52,53,56,58,61,63,70,82,86,99,106,115-117,119-121],
with no change to total glutathione concentration (TGSH)
[56,61,63,99,106,107,118,120,122] has been reported
following a variety of non-eccentric aerobic exercise pro-
tocols. Glutathione status typically returns to basal levels
within 15–30 minutes of recovery [48,50,106,116]. Stud-
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ies reporting null findings for glutathione redox status
[53,68,107,108,123,124] may be partially related to the
timing of sampling, as GSSG is rapidly reduced in vivo by
way of glutathione reductase [5], in addition to the
trained status of the subjects [108] or an insufficient
intensity of exercise [68,107].

DNA oxidation
DNA subjected to attack by RONS results in the formation
of a variety of base and sugar modification products [125].
The presence of these modified products is used to indi-
cate oxidative stress, as they are not present during normal
nucleotide metabolism. Typically, the product 8-hydroxy-
2-deoxyguanosine (8-OHdG) has been measured as an
index of exercise induced oxidation of DNA. Aside from
two investigations noting a significant increase in 8-
OHdG [69,83], the majority of studies have reported no
change following a variety of exercise protocols
[74,82,88,89,99,106,126-129]. Null findings may be par-
tially due to the fact that moderate duration and/or inten-
sity aerobic exercise may not be sufficient to elicit an
increase in 8-OHdG [82], possibly due to the rapid repair
of DNA following oxidation [130,131], as an increase in
the activity of certain DNA repair enzymes has been
observed following acute aerobic exercise [131]. Aside
from the measurement of 8-OHdG, assessment of DNA
damage has also been performed using the single cell gel
electrophoresis assay (Comet assay) which detects DNA
damage with high sensitivity [72]. In these investigations,
increases have been noted in DNA damage post exercise
[72,80,132].

Protein oxidation
Proteins are major targets for RONS because of their high
overall abundance in biological systems and it has been
estimated that proteins can scavenge the majority (50–
75%) of RONS generated [133]. Oxidative damage to pro-
teins can occur directly by interaction of the protein with
RONS or indirectly by interaction of the protein with a
secondary product (resulting from interaction of radical
with lipid or sugar molecule) [17]. Modification of a pro-
tein under conditions of oxidative stress can occur via
peptide backbone cleavage, cross-linking, and/or modifi-
cation of the side chain of virtually every amino acid [17].
Moreover, most protein damage is irreparable and oxida-
tive modification of the protein structure can lead to loss
of enzymatic, contractile, or structural function in the
affected proteins, thus making them increasingly suscepti-
ble to proteolytic degradation [134]. The formation and
accumulation of protein carbonyls (PC) has been one of
the most commonly used methods for assessing overall
protein oxidation in relation to exercise.

Increased protein oxidation evident by accumulation of
O, O'-dityrosine [83] or PC have been reported by several

authors [43,52,58,70,74,89,99,104,111], and have been
shown to increase in a duration dependent fashion [43],
as well as remain elevated for several hours (8 hours post)
post aerobic exercise [52]. Null findings for PC post exer-
cise are likely related to insufficient sampling times, train-
ing status of the subject population and/or short duration
exercise protocols [47,64,66,69,82], as three of the five
investigations noting no increase in PC utilized a GXT as
the exercise stimulus, while only taking samples pre and
immediately post exercise [47,64,66], while, subjects in
the other two studies were considered to be well trained
[69,82].

Antioxidant capacity
In response to conditions of strenuous physical work the
body's antioxidant capacity may be temporarily decreased
as its components are used to quench the harmful radicals
produced. Thus measurement of the body's antioxidant
capacity is utilized as a marker of oxidative stress. This is
commonly assessed via the application of one of several
antioxidant "capacity" assays (TEAC, FRAP, TRAP, ORAC)
and/or the measurement of changes in specific antioxi-
dant enzyme activity/concentration (SOD, GPx, CAT,
GR).

It appears that the antioxidant capacity may be temporar-
ily reduced during and immediately post exercise
[50,94,95,115], after which time levels typically increase
above basal conditions during the recovery period [50,52-
54,58,87,91,111,115]. As with other markers, studies
reporting no change in antioxidant capacity following
exercise may have missed such changes by only taking one
sample immediately post exercise [26,60,62,63], with the
exception of one investigation which reported no change
immediately post exercise, as well as 20 minutes post exer-
cise [113].

Comparable to the antioxidant capacity response to exer-
cise, specific enzymatic activity has been shown to
respond in a similar manner. The antioxidant defense sys-
tem may be reduced temporarily in response to increased
RONS production, but may increase during the recovery
period as a result of the initial prooxidant insult [50,115].
However, conflicting findings have been reported for each
of the four main enzymes, with investigators noting
increases in GPx [56,85,91,135], SOD [85,96,135], and
CAT [52,54,58,85], as well as decreases in GPx [90], GR
[135], SOD [95,136]. Furthermore, no change has also
been reported for GPx [47,54,84,114,121,137], GR
[84,137], SOD [47,56,78,105,137], CAT [47,56,84,137]
activity following exercise. Clearly, these results are mixed
and likely depend on the time of sampling, as well as the
duration and intensity of exercise, which has varied con-
siderably across studies.
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Miscellaneous markers
In addition to those markers listed above, oxidative stress
has also been assessed by way of a variety of other miscel-
laneous markers. These include circulating levels of indi-
vidual antioxidants (e.g., vitamin E, vitamin C, beta-
carotene), intermediates in purine metabolism (xanthine/
hypoxanthine), as well as allantoin (product of the reac-
tion between RONS and urate). Vitamin E is the major
chain breaking antioxidant in vivo, as it serves to termi-
nate the chain reaction of lipid peroxidation by reacting
with the peroxyl radical [2]. Upon reaction with the per-
oxyl radical, vitamin E then becomes a radical itself, which
is subsequently reduced by way of vitamin C (the major
antioxidant in aqueous environments), forming yet
another radical (vitamin C radical), which is further
reduced by GSH [5]. Beta-carotene is a precursor to vita-
min A in vivo, where it functions to suppress singlet oxy-
gen [138].

In terms of circulating antioxidants, no change has com-
monly been observed [67,87,89,106,115,129,139],
despite a few investigations reporting a transient decrease
[75,89,139] or increase [77,106,115] immediately post
exercise. Moreover, levels of reduced vitamin C have been
found to decrease immediately post exercise [48,50], with
one study noting a post exercise increase during the recov-
ery period [50]. During conditions of oxidative stress,
such as during exercise, increased circulation of antioxi-
dants may result from an increased release from tissue
pools, in turn sparing the quenching of other components
of the antioxidant defense system [140]. In addition to the
changes in antioxidants, other studies have reported an
increase in xanthine /hypoxanthine following a variety of
exercise protocols [76,122,128,129,141-143], with two
studies also noting an increase in allantoin [122,144].

Short to moderate duration protocols: impact of 
antioxidant supplementation
Of the above reviewed studies, several investigators have
also included a variety of antioxidant treatments in their
study design, in an effort to attenuate and/or eliminate
exercise-induced oxidative damage. For a summary of
such studies, please refer to Table 2 in Additional file 1.
Typical treatments have included vitamin C, vitamin E,
and beta-carotene, either alone or in combination for a
variety of durations, administered chronically (1–8 weeks
pre exercise) and acutely (1–2 days pre exercise). Vitamin
E is believed to be the most important and effective nutri-
tional antioxidant throughout the lipid phases of the cell,
as it contributes to membrane stability and fluidity by pre-
venting lipid peroxidation, whereas vitamin C plays an
equally important role of preventing lipid peroxidation in
plasma and interstitial fluids [140]. Moreover, vitamin C
and vitamin E work in conjunction with each other during
conditions of oxidative stress, as vitamin C is utilized to

regenerate vitamin E following reaction with RONS [140].
Although not as commonly utilized, the major carotenoid
precursor to vitamin A, beta-carotene, is primarily respon-
sible for quenching singlet oxygen [140]. Aside from the
common antioxidants above, other investigators have uti-
lized less common antioxidants, including: coenzyme
Q10 (CoQ10) [100], N-acetylcysteine (NAC) [63,120],
uric acid [113], propranolol [101].

CoQ10, also known as ubiquinone, is an essential chem-
ical component of the mitochondria in all animal cells
where it functions as a cofactor in the electron transport
chain during the synthesis of adenosine triphosphate
(ATP) [145]. In addition to its role in energy production,
CoQ10 has also been shown to provide antioxidant pro-
tection either by directly scavenging superoxide produced
during oxidative phosphorylation or by regenerating vita-
min C, and vitamin E from their oxidized states [146].
NAC is a thiol-containing compound which potentially
may reduce the impact of RONS-associated damage by
directly scavenging RONS and/or supplying cysteine for
enhanced glutathione synthesis [120]. Uric acid is an
abundant aqueous antioxidant that accounts for almost
two thirds of all free-radical-scavenging activity in human
serum [113]. Finally, propranolol is a β-blocking agent
that has been shown to possess antioxidant properties in
vitro [147].

Several studies have noted an attenuation in oxidative
stress following administration of a variety of mixed anti-
oxidant supplements (e.g., vitamin C and vitamin E/vita-
min C, vitamin E and beta-carotene) [89,98,99,137].
However, independent or combined administration of
vitamin C, vitamin E, and beta-carotene have been the
most commonly utilized treatment option in regards to
non-eccentric aerobic exercise-induced oxidative stress.
Several studies have reported a reduction in exercise-
induced oxidative stress following chronic administration
of vitamin C [62,70,119], vitamin E [21,55,80,139], and
beta carotene [129] when administered alone. However,
attenuation has not occurred for all measured biomarkers
[62,70,80,139]. Moreover, a few studies have reported no
effect of independently administered vitamin C [98], or
vitamin E [66,90,98]. Null findings were also reported fol-
lowing independent administration of CoQ10 [100]. Dis-
parities in the literature regarding antioxidant
supplementation and attenuation of oxidative damage are
likely due to several factors including training status of the
subject population [135], dietary intake [115], as well as
the magnitude and duration of supplementation period,
as both vitamin C [70] and vitamin E [148] have been
shown to respond in a dose-dependent manner. The null
findings in regards to vitamin E supplementation
[66,90,98] could have been due to insufficient dosages
and or treatment durations, as it has recently been shown
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in a time-course study, that maximal reduction of oxida-
tive stress (assessed via F2-isoprotanes) does not occur
until 16 weeks of vitamin E supplementation at a dosage
of at least 1600 IU per day [148]. It is certainly possible,
though not reported to date, that other antioxidants
respond in a similar manner and could potentially
explain a portion of the inconsistency regarding antioxi-
dant supplementation in attenuating exercise-induced
oxidative stress.

Acute antioxidant supplementation prior to or during
non-eccentric aerobic exercise, although not as commonly
investigated, has resulted in more consistent findings
when compared to chronic supplementation. This is evi-
denced by an attenuation in various biomarkers of oxida-
tive stress following treatment, almost without exception
[27,62,63,69,80,101,113,120]. Attenuated biomarkers
have included PC [69], 8-OHdG [69], DNA damage via
Comet Assay [80], GSSG [63,120], TBARS [62], MDA [27],
LOOH [27], F2-isoprostanes [113], total antioxidant
capacity [63,113], and expired pentane [101]. These
results have been noted following acute administration of
a multivitamin [80], vitamin C [27,62], vitamin E [80],
NAC [63,120], uric acid [113], propranolol [101], as well
as an antioxidant (black grape, raspberry, red currant con-
centrates) rich beverage [69]. Furthermore, direct detec-
tion of exercise-induced RONS production, via electron
spin resonance, has also been shown to be eliminated fol-
lowing acute ingestion of 1000 mg of vitamin C [27]. It
should be noted, that in a similar manner to chronic sup-
plementation, no antioxidant treatment completely elim-
inated oxidative stress, as attenuation was not consistent
across all selected biomarkers for any study
[62,63,69,80,101,113,120], with one exception [27].

Eccentric bias
While most investigations have implemented primarily
concentric aerobic regimens (e.g., cycling, treadmill walk-
ing/running), some have measured the oxidative stress
response following aerobic exercise with an eccentric bias,
as discussed below. For review, please consult Table 3 in
Additional file 1.

Eccentric exercise involves high force during the lengthen-
ing portion of muscle contraction. This can occur involun-
tarily or voluntarily during conditions in which the
activated muscle cannot produce enough force to over-
come the resistive force (e.g., during heavy resistance
training) or during an intentional production of submax-
imal force in order to control the eccentric (lengthening)
movement (e.g., controlled lowering of external load and/
or downhill running), respectively. Both damage to the
involved muscle tissue and concomitant soreness associ-
ated with such damage have been shown to be greatest
following eccentric compared to concentric exercise [149].

Furthermore, exercise-induced trauma to the musculature
has been shown to lead to a proinflammatory migration
of phagocytic cells into the affected area, leading to the
increased release of RONS (during respiratory burst),
designed to aid in the breakdown of damaged tissue
[101,150-152]. Both the post exercise phagocytic migra-
tion, as well as the initial increase in RONS during eccen-
tric exercise (due to increased mitochondrial respiration)
have been suggested to result in an acute state of oxidative
stress during and following an eccentric exercise stimulus
[151,153,154].

Almost without exception, the majority of studies have
utilized eccentric protocols in the form of downhill tread-
mill running. Typical intensities and durations have
included running speeds corresponding to 70–75% age
predicted heart rate max or 60% VO2max with a duration of
40–50 minutes of continuous or intermittent (3 bouts of
15 min downhill runs) exercise at a negative 12–20%
grade. This form of exercise is often chosen in order to
induce muscle tissue damage, evident by reported
increases in creatine kinase (CK) [153-156] and lactate
dehydrogenase (LDH) [156] following such a protocol.
Along with these markers of cellular damage, studies have
reported mixed finding in relation to oxidative stress
biomarkers.

Increased lipid peroxidation, measured via TBARS [156],
MDA [154,157,158], F2-isoprotanes [45,154], and LOOH
[155], has been reported by several authors following aer-
obic eccentric protocols in untrained subjects, with eleva-
tions typically reaching significance several hours (> 6 h)
or days (24–72 h) following the stimulus. This would pro-
vide evidence for the increased migration of phagocytic
cells following eccentric exercise, resulting in increased
RONS production and subsequent oxidative damage. In
opposition to the above findings, two similar investiga-
tions, utilizing trained subjects noted no changes in MDA
[153], conjugated dienes [153,155], or glutathione redox
status [151]. It was suggested that trained individuals may
experience an attenuated oxidative stress response follow-
ing eccentric exercise, perhaps mediated by greater anti-
oxidant enzyme protection and/or lower levels of
muscular damage following exercise [153]. Furthermore,
the null findings of Camus et al. [151] may have been
related to sampling time, rather than training status, as
samples were only taken immediately and 20 minutes
post exercise.

Aside from lipid peroxidation, other biomarkers have
been utilized by a few investigators, including markers of
DNA damage (8-OHdG), as well as changes in antioxi-
dant capacity (ORAC) and/or circulating levels of antioxi-
dants (vitamin C, vitamin E). Only one study to our
knowledge has investigated oxidative damage to DNA, as
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well as changes in antioxidant capacity following eccentric
exercise, noting no increase in 8-OHdG and a decrease in
ORAC evident at 72 h post protocol [154]. In regards to
circulating antioxidants, blood levels of vitamin C and
vitamin E have been shown to exhibit no change when
corrected for changes in plasma volume [153,154,158].
Although, other work opposes these findings, noting a
transient decrease in the plasma concentration of vitamin
C [151] and vitamin E in skeletal muscle [158].

As with non-eccentric biased aerobic exercise, a few inves-
tigations have included antioxidants within the research
design involving eccentric aerobic work. Due to the rela-
tively small number of such studies, these can also be
reviewed in Table 3 of Additional file 1. Vitamin E, pro-
vided at a dosage of 1000 and 1600 IU per day for 12
weeks or 48 weeks was reported to attenuate the increase
in F2-isoprostanes following eccentric exercise [154], as
well as eliminate the increase in urinary MDA which was
observed 12 days post exercise in the placebo group [158],
respectively. In support of Meydani et al. [158] a similar
study, utilizing vitamin C (dosage of 1 g/day), noted no
increase in MDA following eccentric exercise, compared to
a significant increase 3 and 4 days post exercise in the pla-
cebo group [157]. It should be noted however that the
treatment effect observed by Sacheck and coworkers [154]
was only evident in older subjects, with young healthy
subjects experiencing no additional benefit of supplemen-
tation. In such a case, it may be that antioxidant supple-
mentation only provides additional protection in those
individuals at an increased risk of oxidative damage due
to the presence of old age and/or disease [159]. Moreover,
a reduction in exercise-induced oxidative stress by way of
antioxidant supplementation may not be beneficial, as it
has been suggested that increased RONS during and fol-
lowing exercise may be necessary in order to bring about
adaptations in antioxidant defenses, as well as other phys-
iological parameters [19,31,36].

Long duration protocols
The idea of exercise-induced oxidative stress representing
a potential contributor to the development and/or pro-
gression of ill health and disease receives considerable
attention when applied to acute long duration (> 2 hours)
aerobic exercise, (for review see [140]). In fact, epidemio-
logical data suggests that a very high volume of exercise is
associated with an increase in the risk of developing cardi-
ovascular disease [160,161]. Moreover, increased oxida-
tive stress has been suggested to be the link, connecting
the above association between excessive exercise and dis-
ease risk [140]. At first glance, this statement appears to be
highly contradictory to common beliefs regarding regular
exercise and health benefits, as current recommendations
suggest that individuals should accumulate at least 30
minutes of moderate-intensity physical activity each day

in order to improve and maintain their health [162].
These recommendations are made in spite of the fact that
numerous studies have reported increased oxidative stress
in response to acute aerobic exercise of various intensities
and durations (for review see relevant section above). Col-
lectively, disease risk has been shown to decrease as a
function of exercise up to a certain point, at which the dis-
ease risk begins to increase, suggesting that an optimal
level of exercise may exist [140]. Because oxidative stress
appears connected to the relationship between disease
and exercise, it is certainly possible that an optimal level
of increased RONS production during exercise gives to
way to improved health, potentially via an upregulation
in antioxidant defenses. However, because RONS produc-
tion is known to be a function of both exercise intensity
[41] and duration [43], exacerbated prooxidant produc-
tion that exceeds the currently undefined optimal level,
may in turn overwhelm antioxidant defenses in such a
way that irreparable oxidative damage may occur, poten-
tially resulting in ill health and or disease. More research
is needed before definitive conclusions can be estab-
lished, however, several studies have investigating the oxi-
dative stress response following long duration aerobic
exercise. For the purpose of this review, long duration aer-
obic exercise will be defined as aerobic activity main-
tained for a duration of greater than two hours and/or
performed in a field setting (e.g., half or full marathon).
Additionally, the impact of acute overtraining on oxida-
tive stress will also be included in this section. These stud-
ies will be reviewed in detail below and will be presented
in Tables 4 (without antioxidant supplementation) and 5
(with antioxidant supplementation) in Additional file 1.

Long duration exercise-induced oxidative stress has typi-
cally been assessed following either a half [163-167] or
full [131,168-176] marathon, an ultramarathon [177-
182], or a triathlon [183-188]. Although other findings
have been reported in reference to a duathlon [189-192],
a long duration run [71,169,193-197], cycle ride
[198,199], march [200], or bike race [71,201-204]. Stud-
ies investigating the impact of overtraining have also been
conducted [191,192,205,206]. Collectively, it would
appear that acute long duration aerobic exercise promotes
an acute state of oxidative stress, evident by reported
increases in lipid peroxidation (TBARS [190,191], MDA
[44,163,164,166,168,203,204], F2-isoprostanes
[177,178,180,181,187,188,194,197,199,207] CD
[71,169,193] LOOH [177,178,197], susceptibility of LDL
to oxidation [170,172,175,193]), protein oxidation (PC)
[203], oxidative damage to DNA (8-OHdG
[168,182,201], DNA damage (Comet assay)
[168,174,200,208]), as well as changes in GSH redox sta-
tus (decreased GSH [165,173,190-192,195] and increased
GSSG [165,173,190-192,195,202,203]). However, a few
exceptions have been noted such as no change in TBARS
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[71,165,171,176,183,192,195], MDA [164,196], F2-iso-
prostanes [179], CD [165,166,170], LOOH
[184,187,188], susceptibility of LDL to oxidation [167],
PC [200], 8-OHdG [185,188], and glutathione redox sta-
tus [183]. Exercise-induced changes in antioxidant
defenses follow a similar pattern as the results presented
in the previous section on non-eccentric aerobic exercise,
with antioxidant capacity typically experiencing an
increase immediately post race
[163,164,169,170,172,175,187,192,197,199]. Varying
results for specific antioxidant enzymes, as well as circu-
lating antioxidants have also been reported by several
authors, noting a transient increase (GPX [176,189,196],
GR [189,202,203], SOD [166,203], CAT [202], vitamin A
[165], vitamin C [165,172,175,207], vitamin E
[169,181,202]), decrease (GPX [175,176,181,207], SOD
[44], CAT [44,166], vitamin A [184], vitamin C
[170,176,181], vitamin E [175,176,181,207]), or no
change (GPX [165,166], SOD [165,173,189,192,202],
CAT [165,189,203], vitamin A [170,176,202,203], vita-
min C [170,184], vitamin E [165,170,172,184,203]) fol-
lowing exercise. Null findings for any of the above
biomarkers have been suggested to be related to the highly
trained nature of the subject populations, intensity of
exercise, biomarkers utilized, the timing of tissue sam-
pling [140], as well as the uncontrolled intake of carbohy-
drates [140] and nonsteroidal anti-inflammatory drugs
(NSAID) [179]. On average, subjects participating in the
above investigations trained approximately 20–30 hours/
per week and thus likely experienced decreased RONS
production, as well as increased antioxidant defenses
[140,183]. It was suggested that while the duration of
some exercise protocols may have been sufficient for the
induction of RONS production, the intensity was likely so
low (in order to maintain the long duration activity), that
such highly trained individuals may have possessed suffi-
cient antioxidant defenses to combat such radical produc-
tion, thus masking any potential accumulation of
oxidative stress biomarkers [183]. Similar to aerobic
eccentric exercise, long duration protocols are known to
result in substantial muscle damage (evident by increased
CK [165,168,182,200,201]), subsequently resulting in
phagocytic migration to the affected area, increased respi-
ratory burst activity and oxidative stress. Therefore, if sam-
pling was not carried well into the recovery period,
oxidative stress may not have been identified. Moreover,
the lack of sampling during the actual protocol itself may
also have impeded investigators ability to detect an oxida-
tive stress, as elevations have been reported during such
protocols [163,181]. Finally, as mentioned above, lack of
control for both carbohydrate and NSAID intake during
exercise may also have influenced results as both have
been shown to attenuate [199] and exacerbate [179] oxi-
dative stress, respectively.

A few studies have investigated the impact of overtraining
for a period of days or weeks on various markers of oxida-
tive stress. Overtraining protocols have included some
form of vigorous exercise, performed for a defined length
of time, such as 10 [205], 28 [192], or 30 [206] days, typ-
ically reporting an increase in oxidative stress following
cessation of training (8-OHdG [205,206], TBARS [206]).
However, in opposition to the above findings, one study
reported no increase in markers of lipid peroxidation,
DNA damage or glutathione redox status following a
period of overtraining in trained men [192].

Long Duration Protocols: Impact of Antioxidant 
Supplementation
Numerous studies have investigated the impact of antioxi-
dant supplementation on long duration exercise-induced
oxidative stress. These studies are presented in Table 5 of
Additional file 1. Treatments have typically consisted of
the common antioxidants (vitamin A, vitamin C, vitamin
E) administered in combination
[174,176,190,191,196,198,207] or separately
[177,180,187-189,209], with the exception of a few stud-
ies utilizing CoQ10 [175], as well as acute administration
of carbohydrate-rich beverages, with [178] or without
[197,199] additional vitamin C.

Unlike the results of antioxidant treatment and short
duration aerobic exercise discussed above, the majority of
investigators have noted no attenuating effect of supple-
mentation on markers of lipid peroxidation, DNA dam-
age, and/or glutathione redox status following long
duration protocols [175,177,191,197]. However, some
exceptions exist, with authors reporting reductions in F2-
isoprostanes [180,199,207], TBARS [198,209], as well as
DNA damage (Comet assay) [174] following supplemen-
tation with vitamin C and vitamin E administered in com-
bination ([174,198,207], as well as vitamin C [199] and
vitamin E [180,209] given separately. While the lack of
enhanced protection against oxidative stress may be
related to the issues discussed above (e.g., training status,
dosages, time course of supplementation), it may be that
the increase in RONS observed during and following long
duration protocols may be so great that the prooxidants
produced overwhelm both the endogenous and exoge-
nously consumed antioxidant defenses, thereby masking
the benefit of supplementation. It is possible that larger
dosages and or longer durations of treatment may be nec-
essary in order to provide significant protection against
long duration exercise-induced oxidative stress [148].

Aerobic exercise and oxidative stress: summary
It has been shown that exercise of various intensities and
durations serves as a sufficient stimulus to invoke
increased RONS production in both animals [25] and
humans [92]. While the body does possess a complex
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antioxidant defense system that serves to provide protec-
tion against RONS, defenses are often not sufficient to
eliminate oxidative damage during and following exer-
cise, evident by numerous findings of increased lipid, pro-
tein, DNA and glutathione oxidation following acute
aerobic exercise (both short and long duration protocols)
in humans and animals. Antioxidant supplementation
does appear to provide some degree of protection, typi-
cally observed with short duration protocols; however,
precise dosages and durations of treatment remain to be
determined. Both the oxidative stress experienced follow-
ing exercise, as well as the impact of antioxidant supple-
mentation appears affected by several factors including
intensity and duration of exercise, training status, age, and
health status of the subjects tested, in addition to the spe-
cific biomarkers chosen, timing of tissue sampling, and
the amount and duration of antioxidant treatment. There-
fore, it is recommended that future investigations employ
sufficiently stringent exercise protocols, and utilize a wide
array of oxidative stress biomarkers and take multiple
samples post exercise (through several hours of days of
recovery) in an attempt to provide valid and meaningful
findings.

Although much has been uncovered regarding oxidative
stress and exercise, it is currently unclear as to whether
exercise-induced RONS production and subsequent oxi-
dative damage represents a necessary or detrimental stim-
uli to physiological function that should be utilized or
minimized, respectively. It may be that a currently unde-
fined optimal level of RONS production and oxidative
damage is necessary for adaptations in antioxidant
defenses and other physiological parameters that lead to
the improvement of proper health. If so, this may provide
insight into the relationship between regular physical
activity, diminished disease risk, and increased life expect-
ancy [160,161,210]. However, excessive RONS produc-
tion and oxidative damage via chronic long duration
exercise and/or overtraining may exceed the aforemen-
tioned optimal level, thereby leading to irreparable oxida-
tive damage, potentially resulting in the development or
progression of ill health and/or disease. If such was the
case, this finding may provide insight into the relation-
ship between excessive exercise, increased disease risk,
and decreased life expectancy [160,161,210]. Clearly,
more research is needed in this area in order to generate
firm answers related to these issues.

Acute Anaerobic Exercise: Human Studies
Although the term anaerobic means "without oxygen",
resistance training does result in increased oxygen con-
sumption both during and following acute exercise. How-
ever, the magnitude of increase in VO2 is far less than what
is observed following acute aerobic exercise [211]. Despite
the comparatively low increase in VO2, it has been shown

that acute anaerobic exercise serves as a sufficient stimulus
to elicit an increase in RONS formation [28,29]. Further-
more, unlike aerobic exercise, where increased mitochon-
drial respiration is thought to be the primary target of
increased RONS, it has been suggested that the increased
radical production and subsequent oxidative stress
observed during and following resistance exercise may be
meditated to a large degree by the activities of certain rad-
ical generating enzymes (xanthine and NADPH oxidase),
prostanoid metabolism, phagocytic respiratory burst, dis-
ruption of iron containing proteins, as well as altered cal-
cium homeostasis [24]. Brief periods of ischemia
followed by reperfusion, resulting from intense muscular
contraction, as well as mechanical stress and/or muscle
damage, are thought to be the mechanisms underlying the
increase in RONS via triggering the activity of radical gen-
erating enzymes as well as initiating the migration of
inflammatory cells to the affected area [20]. Similar to aer-
obic exercise, although the mechanisms are not fully
understood, anaerobic exercise clearly possesses the abil-
ity to result in acute oxidative stress, evident by several
studies reporting an increase in oxidative stress biomark-
ers following exercise [24]. For this review, results will be
discussed relative to the mode of resistance exercise (e.g.,
dynamic, eccentric, isometric, sprint/jump), and will be
presented accordingly in Tables 6–9 of Additional file 1.
Because of the relative infrequency of such studies, those
incorporating antioxidant treatment into their design will
not be discussed in a separate section, but rather they will
be included within their respective section and table.

Dynamic resistance exercise
The majority of studies investigating dynamic resistance
exercise-induced oxidative stress (Table 6 of Additional
file 1) have utilized an exercise protocol consisting of two
or more compound lifts (multiple joint exercises), occa-
sionally performed in a circuit fashion [212-214], for ≥ 3
sets at an intensity of 60–95% 1 RM [212-221]. Other
studies have used a single movement, such as the squat
[222-227] or knee extension [28,29] exercise as the stim-
ulus, with the exception of one study in which isokinetic
knee extension was performed following maximal sprints
on a cycle ergometer [228].

Similar to aerobic exercise, the majority of studies have
reported an increase in oxidative stress, evident by
increased lipid peroxidation [28,29,212,214-216,218-
221,223,225], protein oxidation [216,224,229], and
changes in glutathione redox status [217,224,226],
despite a few studies noting null findings for each (lipid
[212,213,222,224,226-228], protein [226,227], glutath-
ione [218,219]). In regards to DNA oxidation, no study
has reported significant increases following dynamic
resistance exercise [222,224]. Assessment of antioxidant
capacity, concentrations of circulating antioxidants, as
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well as the activities of certain antioxidant enzymes has
resulted in similar inconsistent results to those observed
with aerobic exercise, with authors reporting an increase,
decrease or no change for various markers (for more infor-
mation, consult Table 6 of Additional file 1). Null find-
ings are likely related to the specific biomarkers chosen,
time course of sample collection, intensity of exercise
[221], dietary intake, as well as the training status of the
subject population [212,213,222,224,227]. As with aero-
bic exercise, it may be that oxidative stress occurred but it
did so preceeding or following the sample collection, in a
different tissue other than that utilized (typically blood
and urine), or resulted in oxidative damage to cellular
constituents other than those measured. Furthermore,
trained individuals likely experience attenuated muscular
damage in response to exercise compared to untrained
subjects, in turn blunting the inflammatory and subse-
quent oxidative stress response.

In an attempt to decrease the oxidative damage induced
by exercise, a few studies have investigated the impact of
various antioxidant supplements and/or agents [213-
215,217,220,225,228]. Attenuation of exercise-induced
oxidative stress has been reported following administra-
tion of exogenous vitamin E [214,228], L-carnitine [225],
and allopurinol [217], despite no treatment effect being
noted following similar vitamin E intake [215,216], as
well as following acute ingestion of a carbohydrate bever-
age preceeding and during exercise [213].

Eccentric biased resistance exercise
In the assessment of eccentric biased exercise-induced oxi-
dative stress the majority of protocols involve eccentric
contractions of either the elbow flexor [229-235] or knee
extensor [229,231,236-238] muscles. The exceptions
include those studies in which eccentric exercise was per-
formed on a cycle ergometer [239] or using eccentric
bench press [240]. These studies can be viewed in Table 7
of Additional file 1. Such protocols have been suggested to
result in increased muscle damage/cell membrane disrup-
tion, evident by increased CK following exercise
[229,231,233,238-241]. Furthermore, in an effort to pro-
duce the greatest amount of trauma to the exercising mus-
cle, the majority of studies have recruited untrained
subjects [229,230,233,239], with few exceptions
[238,240].

Such protocols have been shown to result in increased
lipid peroxidation [230,231,237,238], protein
[230,233,237,238] and DNA [236] oxidation, as well as
changes in glutathione redox status
[230,234,235,237,238]. Moreover, values have been
shown to peak 48–72 hours post exercise, suggesting that
increased migration of phagocytic cells and subsequent
increased RONS production via respiratory burst may be

the main determinant of the oxidative stress response
[230,231,233,237,238]. However, null findings have also
been reported despite similar exercise regimens for mark-
ers of lipid peroxidation [229,232,239-241], protein oxi-
dation [229], and glutathione redox status [233]. These
findings are likely related to the limitations discussed pre-
viously. A lack of significance may also be the result of an
inability to induce muscular damage (evident by no
increase in CK following exercise [232]), or the use of skel-
etal muscle, rather than blood, to measure oxidative stress
[229,241]. Aside from the biomarkers discussed above,
various antioxidant capacity assays, as well as the activity
of specific antioxidant enzymes (e.g., SOD, GPx, CAT)
have been shown to increase following exercise
[231,237,238,241], with few exceptions [231,239].

Little information exists concerning eccentric exercise and
antioxidant supplementation, however a few studies have
noted an attenuation in oxidative stress following admin-
istration of vitamin C, vitamin E, and selenium given in
combination [230], or vitamin C alone [235]. No benefit
has also been reported following consumption of a vita-
min E, omega-3 free fatty acids or soy isolate mixture
[232], a vitamin C and vitamin E mixture [240] as well as
following intake of vitamin C and NAC [231]. Moreover,
the vitamin C, NAC combination was administered fol-
lowing exercise and into the recovery period and was
shown to result in an exacerbated increase in oxidative
stress compared to placebo [231].

Isometric exercise
Isometric protocols have typically consisted of handgrip
exercises with [242,243] or without [81,244-247] thumb
adduction at 50–100% of maximal voluntary contraction
(MVC) either until exhaustion [242,243,245,246] or for a
specified amount of time [81,244,246,247]. Other studies
have also utilized static knee extension at an intensity of
30 [248] or 66% MVC [249]. While prolonged isometric
exercise is characterized by acute ischemic conditions, one
study attempted to exacerbate the ischemic period by
placing a blood pressure cuff (inflated to 30 mmhg above
known systolic pressure) on the exercising arm during the
protocol [247]. It is believed that the acute ischemia and
rapid reperfusion observed during and following pro-
longed isometric exercise gives rise to increased RONS for-
mation, perhaps via the radical generating enzyme
xanthine oxidase [24]. Studies utilizing isometric proto-
cols can be viewed in Table 8 of Additional file 1.

Though data are limited, the majority of the above studies
have noted an increase in lipid peroxidation following
exercise [81,242-245,247], as well as changes in the glu-
tathione redox status [242,244,246,248] and decreased
antioxidant capacity [244,245]. However, changes appear
to be transient, rapidly returning to pre exercise levels
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within minutes following exercise [242,247]. The highly
transient nature of changes in biomarkers may poten-
tially, along with the previously discussed factors, explain
some of the null findings [81,242,248,249]. Only one
study to our knowledge has investigated the impact of
antioxidant treatment, reporting an attenuation of glu-
tathione oxidation following handgrip exercise when sub-
jects were given an infusion of 100 ml of NAC during
exercise [246].

Sprint/jump exercise
The majority of studies investigating oxidative stress sub-
sequent to sprinting exercise have utilized some form of
fatiguing maximal effort sprint either on a cycle ergometer
[30,250-254] or running surface [255,256]. Additionally,
studies incorporating both an intermittent shuttle run
[257-259], as well as a 100 m and 800 m swim [260] will
also be discussed in this section. In regards to jumping
exercise, one study measured oxidative stress in response
to six, 30 second sets of repeated jumping in trained and
untrained men [261]. These investigations are presented
in Table 9 of Additional file 1.

Results for the sprinting studies are much more contradic-
tory than those of the previous section, with a similar
number of studies noting both an increase in lipid perox-
idation [30,251,256], protein oxidation [252], and DNA
damage [255], as well as no change in lipid [250,252-
254], protein [250], and DNA [252] oxidation. It may be
that the volume of exercise, and/or the resistance applied
during sprinting was insufficient to evoke an oxidant
stress, as lipid peroxidation has been shown to increase as
a function of the resistance applied to the flywheel during
cycle sprinting [251]. Moreover, a longer duration inter-
mittent shuttle run has been shown to result in increased
lipid peroxidation, assessed via increased concentrations
of MDA [257-259], with both a null and significant atten-
uating effect offered by acute [257,258] and chronic [259]
administration of vitamin C prior to the run, respectively.
Null findings have also been reported following supple-
mentation for 20 days with Coenzyme Q10 prior to an
intermittent maximal sprint test on a cycle ergometer
[254].

In regards to other forms of high intensity anaerobic exer-
cise, both successive jumping exercise [261], as well as
intense swimming [260] resulted in no change in lipid
peroxidation and a decrease in reduced glutathione,
respectively.

Anaerobic exercise and oxidative stress: summary
It has been shown that anaerobic exercise results in
increased RONS production and collectively, it appears
that all forms of anaerobic exercise possess the ability to
result in increased oxidative stress. The mechanisms

responsible for the exercise-induced increases in RONS
have been suggested to be largely a function of radical
generating enzymes (activated in response to ischemia
followed by reperfusion) and/or phagocytic immune
response following muscle damaging exercise. Similar to
aerobic exercise, a variety of factor likely impact the oxida-
tive stress response observed, including, specific biomark-
ers chosen, time course of sampling, tissues sampled,
intensity and volume of exercise, as well as the training
status and dietary intake of the subjects. The use of anti-
oxidant supplements has given rise to conflicting results
with some studies noting an impact, despite other similar
studies reporting no additional benefit of supplementa-
tion. Taken together, the results of the anaerobic research
are not unlike those of aerobic nature; there are simply
fewer data on the former compared to the latter. As with
aerobic exercise, it is currently unclear as to whether
increased RONS formation observed during anaerobic
exercise represents a necessary or detrimental event.

Sporting events
Sporting events often possess components of both an aer-
obic and anaerobic nature and are typically performed in
an outdoor, uncontrolled setting. Thus, such studies are
discussed in a separate section and are presented in Table
10 of Additional file 1. A few investigators have examined
the oxidative stress experienced following sporting events
including football [262], basketball [263], soccer
[264,265], rugby [266,267], motocross racing [268], and
professional climbing [269]. While most did in fact meas-
ure oxidative stress following an acute session
[262,265,266,268,269], others simply assessed changes
in biomarkers at rest following a prolonged period of reg-
ular season training [263,264,267].

Related to football, one study noted an increase in lipid
peroxidation (measured via increased total peroxides and
antibodies against oxLDL) following a professional Amer-
ican football game [262]. Similar increases in lipid perox-
idation have also been noted following a rugby match
[266] and soccer practice [265], with untrained rugby
players experiencing exacerbated increases in lipid perox-
idation compared to their trained counterparts [266].
Moreover, trained athletes have been shown to possess
higher levels of antioxidant protection [267], as well as
lower levels of resting lipid peroxidation [264] compared
to sedentary controls. Both continuous climbing to
exhaustion, as well as a simulated motocross race resulted
in an increase in MDA, PC, GSSG, and TAC [268,269],
with climbing exercise also inducing a decrease in GSH
and TGSH [269].

Although various sporting events appear to result in
increased oxidative stress, it is likely that the vigorous
training accompanied by such events leads to an up-regu-
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lation in antioxidant defenses, thereby protecting individ-
uals from excessive oxidative damage. However, as may be
the case with long duration aerobic exercise, athletes par-
ticipating in a high volume of vigorous exercise may ben-
efit from antioxidant treatment, as supplementation has
been shown to result in decreased oxidative stress and
increased antioxidant defenses in professional basketball
players [263].

Acute aerobic and anaerobic exercise: animal studies
The data presented thus far has been relative to investiga-
tions using human subjects. However, an extensive body
of research is available with regards to exercise-induced
oxidative stress in animal models. Because of the volume
of this work, in addition to the fact that multiple tissues
and biomarkers are often studied, each individual investi-
gation will not be presented in table format. Rather, a
brief synopsis of this work will be presented below.

First and foremost, it should be noted that the results of
research utilizing animal models are not unlike those
using human subjects in that most demonstrate an
increase in oxidative stress biomarkers with acute exercise.
It should also be noted that there exists more consistency
in the reported findings with the animal work, likely due
to the homogeneity of animals and the great degree of
control that can be implemented in these designs. The vast
majority of investigators have reported increases in vari-
ous oxidative stress biomarkers in several tissues follow-
ing a myriad of both aerobic [25,270-292] and anaerobic
[293-298] exercise protocols. Null findings for lipid
[272,298-302], protein [279,300,303], and glutathione
[290,304] oxidation are far more scarce than those seen in
human studies, which could potentially be explained by
the much more controlled nature of animal research as
well as the feasibility of measuring a variety of oxidative
stress biomarkers in several biological tissues (e.g., heart,
brain, lung, kidney, diaphragm, skeletal muscle, blood).

Acute exercise and oxidative stress: effect of gender
In a study conducted by Ruiz-Larrea et al. [305], the
female sex hormone estrogen was shown to exhibit anti-
oxidant properties in vitro, and because females possess a
larger concentration of estrogen compared to males, it was
believed that they may be less susceptible to oxidative
stress [172,186]. Evidence in support of this notion has
been provided by both animal and human studies,
although gender differences appear much more pro-
nounced when utilizing animal models, as female rats run
to exhaustion have shown modest if any exercise-induced
oxidative stress [306] as compared to male rats [307]. In
addition to an attenuated response following acute exer-
cise, female rats have also been shown to possess lower
resting levels of oxidative stress compared to males [308].
However, estrogen may not be the only factor involved in

gender comparisons of oxidative stress [306], as vitamin
C, vitamin E and glutathione levels were also reported to
differ in male and female rats following an acute exercise
bout [309] as well as at rest [308]. Moreover, estrogen
administration to male rats resulted in a decrease in vita-
min C levels within the muscle [310], providing evidence
that alternative mechanisms other than increased estro-
gen may play a role in explaining the attenuated oxidative
stress response observed in the above investigations.

In regard to studies conducted utilizing human subjects,
Chung et al. [86] investigated the role of estrogen in
decreasing exercise-induced oxidative stress and found
minimal difference in oxidative stress levels of women
during both the luteal and follicular phases of their men-
strual cycle. In support of Chung and coworkers [86], sev-
eral other studies have reported no difference in the
exercise-induced oxidative stress response between men
and women following both submaximal aerobic
[43,99,114], long duration aerobic [172], and isometric
[246] exercise. It should be noted that although no differ-
ences were reported following acute exercise, women have
been shown to possess decreased oxidative stress, as well
as increased antioxidant protection at rest compared to
men [99,114,311]. In opposition to the above findings,
Ginsburg et al. [186] reported a decrease in the suscepti-
bility of plasma lipids to peroxidation in men following a
triathlon, with no significant change being noted in
women. However, uncontrolled antioxidant supplemen-
tation occurred in the study and women were 10 yrs older
than men and their activity time was about 150 minutes
longer with exercise intensity not matched [186].

Collectively, it appears that both men and women are sus-
ceptible to oxidative stress at rest and during exercise.
Female resting levels of oxidative stress markers may be
lower, but exercise-induced oxidative stress responses
appear similar between genders. Women's lower resting
levels could in part be due to their higher expression and
activity of antioxidant enzymes and could potentially
explain their longer life span [308].

Oxidative stress and chronic exercise: role of hormesis
Clearly, acute exercise imposes a physical stress on the
body, as numerous studies have shown that oxidative
stress biomarkers are increased following both aerobic
and anaerobic exercise. However, whether this exercise-
induced increase in RONS exerts detrimental effects on
long term physiological function remains a topic of
debate, as an ever increasing body of evidence in the area
suggests that biologically-derived RONS act in a hormetic
manner [9,312,313]. That is, in response to repeated
exposure to toxins and/or stressors the body undergoes
favorable adaptations that in turn result in enhanced
physiological performance and improved physical health
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[9,313]. Thus, an optimal level of RONS production
appears conducive to optimal health, whereas too little or
too much RONS result in impaired defense capabilities or
extensive oxidative damage and inflammation, respec-
tively, both of which would be expected to promote the
development of ill-health and/or disease. The above con-
cept is perhaps best exemplified when applied to the
effects of exercise-induced RONS production on the intra-
cellular redox balance. Recall from above that the redox
state present within individual cells has been suggested as
a key component of gene expression, as well as cell func-
tion, and that chronic disregulation of such balance in
favor of a more oxidizing environment is associated with
the development of numerous diseased states, in addition
to the aging process [16]. Moreover, because a more
reducing environment is believed to promote health-
enhancing effects [16], interventions designed to shift the
redox balance in favor of greater reducing potential via
increasing antioxidant defenses appears warranted.

One such method that appears to exert powerful benefits
in terms of increasing antioxidant protection is the per-
formance of regular moderate intensity exercise [9]. This
upregulation in antioxidant defense observed with regular
exercise training would be expected to shift the redox bal-
ance in favor of more reducing conditions, thereby poten-
tially explaining the pro-health/anti-pathological effects
of exercise [16,313]. The mechanism whereby regular
exercise results in an adaptive benefit is well described [9].
In brief, exercise-induced RONS appear to serve as the
"signal" needed for the activation of MAPKs (p38 and
ERK1/ERK2), which in turn activate the redox sensitive
transcription factor NF-κB [36], via activation of IκB
kinase, which then phosphorylates IκB (the inhibitoy sub-
unit of NF-κB). IκB is then ubiquinated and subsequently
degraded via the cytosolic ubiquitin-proteosome path-
way, thereby releasing NF-κB to migrate into the nucleus.
Several antioxidant enzymes [manganese superoxide dis-
mutase (MnSOD), inducible nitric oxide synthase
(iNOS), glumatylcysteine synthetase (GCS)] contain NF-
κB binding sites in their gene promoter region and thus
are potential targets for exercise-induced upregulation via
the NF-κB signaling pathway [9]. Therefore, any attempt
to attenuate the exercise-induced increase in RONS pro-
duction (via antioxidant supplementation) may actually
blunt the adaptive increase in antioxidant defenses and
subsequent desirable shift in redox balance, thereby
increasing an individual's susceptibility to disease and
prooxidant attack both at rest, as well as during subse-
quent exercise bouts [36,44].

Evidence in support of this notion is provided by the
reportedly blunted exercise-induced upregulation in
MnSOD, iNOS, reduction in phosphorylation of p38 and
ERK1/ERK2, as well as reduced activation of NF-κB in

response to allopurinol (a known inhibitor of xanthine
oxidase) administration [36]. Additionally, in both
human and animal models, supplementation with vita-
min C has been shown to blunt adaptive increases in
VO2max, as well running to exhaustion [312]. Similar
results in terms of reduced exercise performance following
antioxidant supplementation have been reported with the
use of vitamin C [314], vitamin E [315] and ubiquinone-
10 [316] in greyhounds and humans, respectively. It
should be understood that the potential negative effects of
antioxidant supplementation may exist only when
applied to moderate intensity exercise, as administration
of antioxidants during competitive and/or exhaustive
exercise training periods has been shown to attenuate
markers of muscle damage and lipid peroxidation [317].

Collectively, it would seem that an optimal level of RONS
produced during exercise is not only necessary, but advan-
tageous in that it serves to drive the desired adaptive
response. In support of this notion, adaptations that occur
to the body's antioxidant defense system in response to
regular exercise appear to not totally eliminate oxidative
damage, but merely reduce potential damage from future
acute bouts of exercise [24,318], as well as other ROS gen-
erating situations. These findings support the idea that
complete elimination of exercise-induced RONS would
not be conducive to optimal physiological function. On
the contrary, the production of RONS above and beyond
that currently undefined level, potentially as a conse-
quence to conditions similar to overtraining (chronic per-
formance of vigorous exercise), may serve to overwhelm
the defense system in place, thereby resulting in extensive
oxidative damage, decreased performance and ill-health/
disease, as evidenced by the increase in disease risk associ-
ated with ultra-endurance exercise training [44]. At
present, it would seem prudent for future research within
the area of oxidative stress and exercise to focus attention
towards further elucidating this critical limit between
desirable and detrimental effects of exercise-induced
RONS. This information is important in informing ath-
letes and coaches, exercise enthusiasts and trainers, clini-
cal populations and practitioners, as well as the general
population as to the need for antioxidant supplementa-
tion within the context of regular exercise. This work may
also provide information as to the volume of exercise con-
ducive to beneficial health outcomes.

Conclusion
At present, it appears that all forms of exercise, both aero-
bic and anaerobic, possess the potential to result in
increased RONS production and subsequent oxidative
stress in both human and animal models. It should be
understood that results presented above are in relation to
otherwise healthy individuals. A handful of investigations
have been conducted addressing exercise-induced oxida-
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tive stress in diseased populations including cardiovascu-
lar disease [77,78], intermittent claudication [65],
diabetes [61,79,319], hypercholesterolemia [96], obesity
[60,110], and chronic obstructive pulmonary disease
[320], as well as in cigarette smokers [74,321]. These
investigations have typically noted an exacerbation in oxi-
dative stress in diseased subjects compared to healthy con-
trols [60,61,65,74,78,110,319,321]. Aside from disease
status, several other factors appear to play a significant
role in the exercise-induced oxidative stress response
including mode, duration, and intensity of exercise, spe-
cific biomarkers chosen, time course of tissue sampling, as
well as the training status and dietary intake of the subject
population. Discrepancies in the literature are likely
related to the above factors, as well as individual differ-
ences inherent with human research.

In the past, the relationship between exercise and oxida-
tive stress has commonly been viewed as a detrimental
phenomenon that should be reduced or eliminated in an
effort to improve performance and/or health, with studies
reporting conflicting results following antioxidant supple-
mentation. While excessive RONS production and oxida-
tive stress certainly has the ability to result in
physiological damage, perhaps leading to the develop-
ment of ill-health and/or disease over time, an optimal
level of prooxidant production may actually serve as the
necessary stimulus for the upregulation of antioxidant
defenses, thereby providing protection against future
RONS attack and disease development. Although the role
of oxidative stress in exercise-induced adaptations, as well
as in human physiology remains to be completely eluci-
dated, it appears based on the extensive body of literature
that a currently undefined optimal level of RONS produc-
tion may be imperative in order for optimal adaptive
potential and physiological function to be achieved. It
may no longer be prudent to view prooxidants produced
during exercise as harmful agents, but rather as a useful
mechanism that can be manipulated and utilized in an
effort to achieve the primary goal of all exercise training;
that is, to maximize training-induced adaptations.
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