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Abstract
Background: The maximum post exercise blood lactate concentration (BLCmax) has been
positively correlated with maximal short-term exercise (MSE) performance. However, the moment
when BLCmax occurs (TBLCmax) is rather unpredictable and interpretation of BLC response to MSE
is therefore difficult.

Methods: We compared a 3- and a 4-parameter model for the analysis of the dynamics of BLC
response to MSEs lasting 10 (MSE10) and 30 s (MSE30) in eleven males (24.6 ± 2.3 yrs; 182.4 ± 6.8
cm; 75.1 ± 9.4 kg). The 3-parameter model uses BLC at MSE-start, extra-vascular increase (A) and
rate constants of BLC appearance (k1) and disappearance (k2). The 4-parameter model includes
BLC at MSE termination and amplitudes and rate constants of increase (A1, y1) and decrease (A2,
y2) of post MSE-BLC.

Results: Both models consistently explained 93.69 % or more of the variance of individual BLC
responses. Reduction of the number of parameters decreased (p < 0.05) the goodness of the fit in
every MSE10 and in 3 MSE30. A (9.1 ± 2.1 vs. 15.3 ± 2.1 mmol l-1) and A1 (7.1 ± 1.6 vs. 10.9 ± 2.0
mmol l-1) were lower (p < 0.05) in MSE10 than in MSE30. k1 (0.610 ± 0.119 vs. 0.505 ± 0.107 min-

1), k2 (4.21 10-2 ± 1.06 10-2 vs. 2.45 10-2 ± 1.04 10-2 min-1), and A2 (-563.8 ± 370.8 vs. -1412.6 ± 868.8
mmol l-1), and y1 (0.579 ± 0.137 vs. 0.489 ± 0.076 min-1) were higher (p < 0.05) in MSE10 than in
MSE30. No corresponding difference in y2 (0.41 10-2 ± 0.82 10-2 vs. 0.15 10-2 ± 0.42 10-2 min-1) was
found.

Conclusion: The 3-parameter model estimates of lactate appearance and disappearance were
sensitive to differences in test duration and support an interrelation between BLC level and
halftime of lactate elimination previously found. The 4-parameter model results support the 3-
parameter model findings about lactate appearance; however, parameter estimates for lactate
disappearance were unrealistic in the 4-parameter model. The 3-parameter model provides useful
information about the dynamics of the lactate response to MSE.

Background
In the early part of the last century, lactate was identified
as an indicator of glycolytic activity [1-3]. Soon after-

wards, it was observed that blood lactate concentration
(BLC) continues to increase for a significant period after
termination of maximal short-term high-intensity exercise
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(MSE) before it starts to decrease [4,5]. The maximum of
the post exercise blood lactate concentration (BLCmax) has
been positively correlated with the ability to tolerate high
levels of BLC, required to perform well in MSE events [6-
8]. An increase in lactate enables calculation of the energy
derived from anaerobic metabolism via glycolysis [6,8].
However, the moment when BLCmax occurs (TBLCmax) is
rather unpredictable and interpretation of BLC response
to MSE is difficult.

In the early 1980s, a bi-exponential 4-parameter model
was developed to analyse the dynamics of lactate after
exercise [9-12]. It describes the post exercise BLC based on
two compartments, the working muscle and the non-mus-
cular lactate space, and assumes that the intra-vascular lac-
tate concentration represents the average lactate
concentration in the non-muscular space [11]. The two
exponential terms describe the post exercise flux of lactate
from the muscle into the non-muscular space and the sub-
sequent disappearance of lactate out of the non-muscular
space. It includes the BLC at the end of exercise
(BLCend_Ex), the amplitude (A1) and rate constant (y1) of
the increase and the amplitude (A2) and the rate constant
(y2) of the decrease of the BLC (Eq.1).

Recently a 3-parameter bi-exponential model was put for-
ward as a means of calculating the BLC response to MSE
[7]. The 3-parameter model was initially developed to
model radioactive transformations [13]. Later it was used
as pharmacokinetic model [14]. It describes concentra-
tions in the one compartment model as a function of time
with first-order invasion and first-order elimination. It
requires a BLC value at the start of exercise (BLC0). It
approximates an increase of lactate (A) in the extra-vascu-
lar water space generated by exercise metabolism mainly
in working muscles during MSE, which is equivalent to
the subsequent decrease to the pre-exercise lactate concen-
tration. It furthermore estimates two velocity constants
describing the corresponding kinetics of the appearance
(k1) and the disappearance (k2) of lactate into and out of
the blood compartment (Eq.2).

Differentiation of both models allows for the determina-
tion of TBLCmax, insertion of TBLCmax in Eq.1 and Eq.2
give the corresponding BLCmax.

The aims of the present study were 1) to test whether the
proposed bi-exponential 3-parameter model sufficiently
describes the changes in BLC compared with the previ-

ously used 4-parameter model, and 2) to analyse how
parameters are changed by the duration of the MSE.

Methods
Eleven male subjects (mean ± SD age: 24.6 ± 2.3 yrs;
height: 182.4 ± 6.8 cm; body mass: 75.1 ± 9.4 kg; body
mass index: 22.6 ± 2.5 kg m-2; peak oxygen uptake: 4080
± 228 ml min-1) participated in the present study. All sub-
jects were healthy non-smokers, physically active but not
specifically trained. None of whom were receiving any
pharmacological or specific dietetic treatment. Informed
consent was obtained from all subjects after explanation
of the nature and risks involved in participation in the
experiments, which conformed to internationally
accepted policy statements regarding the use of human
subjects as approved by the local ethics committee.

Each subject performed two MSE-tests lasting 10 s
(MSE10) and 30 s (MSE30) on a mechanically braked
cycle ergometer (834 E, Monark) in a randomised order.
All tests were carried out at similar times in the morning
at least two hours after a light meal. There was a recovery
period of one week between testing sessions. The subjects
were instructed not to engage in strenuous activity during
the day before an exercise test.

In accordance with accepted recommendations for anaer-
obic performance testing [15], subjects performed a
standardised five minutes cycling warm-up at 50 W which
included two sprints lasting three seconds performed at
the end of the third and the fourth minute as coordinative
preparation for MSE10 and MSE30 tests. After a further 10
minutes of rest, the subjects were instructed to pedal as
fast as possible. A resistance corresponding to 7.5 % of the
body weight was applied after an acceleration phase of
three seconds. After termination of each test, the subjects
were supervised during a 20 min rest period, where they
maintained a seated position.

The BLC was determined from capillary blood samples
drawn from the hyperaemic ear lobe. Samples were taken
immediately before each test, within 15 s after each test,
minute by minute up to the 10th minute, and every second
minute up to the 20th minute post-test. Samples were
haemolysed and analysed utilizing the enzymatic amper-
ometric method (Ebio Plus, Eppendorf).

Data are reported as mean and standard deviation (mean
± SD). Differences within subjects were analysed using the
paired t-test. A multiple nonlinear regression analysis was
used for the approximation of the BLC time courses using
the bi-exponential 3-parameter model to determine the
constants A, k1 and k2, and also the bi-exponential 4-
parameter model with the constants A1, A2, y1 and y2. The
goodness of the fits of the 3- and the 4-parameter model
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was compared using the F-test [16]. The interrelationships
between selected variables were examined using simple
regression analysis. Statistical significance was indicated
using an alpha level of 0.05.

Results
Performance and BLC
Average mechanical power output was higher (10.1 ± 1.0
vs. 8.3 ± 0.7 W kg-1, p < 0.05), whilst average mechanical
work was lower (100.6 ± 9.8 vs. 248.0 ± 21.5 J kg-1, p <
0.05) in MSE10 than in MSE30. At any post MSE time, the
BLC was consistently higher (p < 0.05) under MSE30-
than under MSE10-conditions (Fig. 1, 2, 3, 4).

Goodness of fits, parameter estimations, TBLCmax and 
BLCmax
Both models adequately described the BLC response to
MSE10 and MSE30, respectively (all R2 ≥ 0.9369). The
reduction of the number of parameters decreased the
goodness of the fit in every MSE10 and in 3 tests under
MSE30-conditions (Tab. 1 and 2 and Fig. 1, 2, 3, 4).

In both tests, there was no difference between k1 of the 3-
and y1 of the 4-parameter model. Furthermore, all lactate
appearance parameters were highly correlated between
both models (r > 0.84, p < 0.001). Contrary to the latter
in both tests k2 was higher (p < 0.05) than y2 (Tab. 3 and
4).

TBLCmax in MSE30 and BLCmax in MSE10 were higher (p <
0.05) using the 3- than the 4-parameter model (Tab. 3 and
4). BLCmax in MSE10 was also higher (p < 0.05) than the

corresponding highest directly measured BLC of 8.4 ± 1.8
mmol l-1. All maxima estimated with different models
were highly correlated (all r > 0.91, p < 0.001).

Effect of test duration
The 3-parameter model revealed lower (p < 0.05) values
of A, BLCmax and TBLCmax in MSE10 than in MSE30 (Tab.
3). k1 and k2 were higher (p < 0.05) in MSE10 than in
MSE30 (Tab. 3). A negative correlation (p < 0.05) between

BLC, individual 3-parameter model approximations for MSE30Figure 3
BLC, individual 3-parameter model approximations for 
MSE30.

BLC, individual 3-parameter model approximations for MSE10Figure 1
BLC, individual 3-parameter model approximations for 
MSE10.

BLC, individual 4-parameter model approximations for MSE10Figure 2
BLC, individual 4-parameter model approximations for 
MSE10.
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k2 and A (r = 0.51; p < 0.005; y = -0.006 x + 0.056) and k2
and BLCmax was found (Fig. 5).

Use of the 4-parameter model showed lower (p < 0.05)
values of A1, and higher (p < 0.05) levels of A2 and y1 in
MSE10 than in MSE30 (Tab. 4). No significant difference
in y2 was found between MSE10 and MSE30 (Tab. 4).

Discussion
Both MSE tests generated normal to high values of power
output, work and BLC values for maximal exercise tests of
corresponding durations in non-specifically trained
healthy male subjects aged 20 to 30 years [6,7,15,17].

Under these conditions, the bi-exponential 3-parameter
and the 4-parameter model adequately described the
changes in BLC as a cumulative effect of all related factors
irrespective of whether any of these factors' specific behav-
iour may be described adequately using exponential mod-
els as well. Reduction of the number of parameters from 4
to 3 did clearly impair the goodness of the fit of the BLC
under MSE10- but only to a minor extent under MSE30-
conditions.

The observed differences in A and BLCmax between MSE10
and MSE30 clearly reproduced the frequent observation
that after high intensity short term exercise the BLC is not
only a result of exercise intensity but also of the duration
of the event requiring net lactate production in the extra-
vascular compartment. Higher values of A and BLCmax

Table 1: 3-parameter vs. 4-parameter model to describe the BLC-response to MSE10

No Model R2 SS ((mmol l-1)2) A & A1 (mmol l-1) k1 & y1(min-1) A2 (mmol l-1) k2 & y2(min-1) F-test

1 3-Par. 0.9612 1.4722 7.6001 0.4648 0.0665 #
4-Par. 0.9814 0.4127 6.3018 0.3685 -18.4300 0.0206

2 3-Par. 0.9882 0.5224 7.4582 0.4197 0.0491 #
4-Par. 0.9902 0.2586 6.3885 0.5273 -665.7111 0.0003

3 3-Par. 0.9932 0.7271 11.1438 0.5304 0.0317 #
4-Par. 0.9975 0.1277 9.0771 0.4665 -403.1144 0.0007

4 3-Par. 0.9900 0.1645 4.3546 0.6661 0.0318 #
4-Par. 0.9885 0.0833 3.5289 0.6283 -272.6364 0.0004

5 3-Par. 0.9934 0.6322 11.2838 0.7024 0.0498 #
4-Par. 0.9967 0.1685 8.5908 0.6356 -21.6096 0.0209

6 3-Par. 0.9903 0.7606 9.4807 0.7199 0.0363 #
4-Par. 0.9924 0.2987 7.3507 0.7579 -1067.4220 0.0002

7 3-Par. 0.9914 0.8179 10.4780 0.6771 0.0317 #
4-Par. 0.9935 0.2906 8.0916 0.6162 -961.1428 0.0003

8 3-Par. 0.9805 1.0944 8.1816 0.7267 0.0348 #
4-Par. 0.9871 0.3348 6.1414 0.6068 -917.7335 0.0002

9 3-Par. 0.9871 0.7901 8.4675 0.7458 0.0425 #
4-Par. 0.9905 0.3065 6.4371 0.8290 -669.8416 0.0003

10 3-Par. 0.9778 2.0009 10.7703 0.5843 0.0423 #
4-Par. 0.9928 0.3211 8.3454 0.4849 -838.0681 0.0004

11 3-Par. 0.9877 1.0402 10.6474 0.4781 0.0464 #
4-Par. 0.9945 0.2487 8.5783 0.4454 -366.2962 0.0009

R2: coefficient of determination; SS: sum of squared residuals; A: extra-vascular increase of lactate (3-parameter model); A1: amplitude of the 
invasion of lactate into the blood compartment (4-parameter model); k1 or y1: rate constant of lactate invasion into the blood compartment; A2: 
amplitude of the evasion of lactate out of the blood compartment (4-parameter model); k2 or y2: rate constant of lactate evasion out of the blood 
compartment; #: significantly improved goodness of the fit using the 4-parameter model

BLC, individual 4-parameter model approximations for MSE30Figure 4
BLC, individual 4-parameter model approximations for 
MSE30.
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coincided with an increase of TBLCmax from approx. 5 min
to 7 min. Differences between calculated and directly
measured values of BLCmax of approximately 1 % reflect
time intervals of less than ± 1 min of TBLCmax, which
appears practically neglectable under the consideration of
usual blood sampling intervals between 1 and 3 min.
Both models show that the longer TBLCmax results from a
combined decrease of the rate constants of lactate inva-
sion and lactate evasion.

Neither the 3- nor the 4-parameter model does directly
predict the real amount of intra-muscular lactate increase

of any specific muscle. MSE10 and MSE30 leg-cycle
ergometries are whole-body exercises involving signifi-
cant contributions from lean tissue masses throughout
the entire body [18]. Assuming a muscle mass of 40 % of
total body mass and typical dilution factors for total body
water and blood water content [7,8,19,20], the A-values
estimated for MSE10 and MSE30 do represent a net
increase in muscular lactate of 16.9 mmol kg-1 (MSE10)
and 27.6 mmol kg-1 (MSE30), equivalent to a rate of net
increase in muscular lactate of 1.69 mmol kg-1 s-1 and 0.92
mmol kg-1 s-1. These values are well within the range of the
magnitude of directly measured intra-muscular lactates
and equivalents of approx. 1.18 kJ kg-1 and 1.93 kJ kg-1 of
anaerobic lactic energy production found in previous
studies that used comparable durations of maximal
cycling or electrical stimulation [17,21,22].

Both models provided almost identical results about the
invasion of lactate into the blood compartment. This was
not the case with respect to the lactate elimination. The 3-
parameter model supported previous results that the rate
constant decreases if the BLCmax increases [23-25]. The k2-
values found in the present experiments using the 3-
parameter model represent rate constants of lactate elimi-
nation equivalent to BLC half times similar to others
determined previously [23-25]. Contrary, the 4-parameter
model provided y2-estimates equivalent to halftimes of

Table 3: Kinetics of the blood lactate response to given short-
term maximal cycling tests based on the bi-exponential 3-
parameter model

MSE10 MSE30

A (mmol l-1) 9.1 ± 2.1 15.3 ± 2.1*
K1 (min-1) 0.610 ± 0.119 0.505 ± 0.107*
K2 (min-1) 4.21 10-2 ± 1.06 10-2 2.45 10-2 ± 1.04 10-2*
BLCmax (mmol l-1) 8.5 ± 1.9# 14.1 ± 1.8*
TBLCmax (min) 4.8 ± 0.6 6.6 ± 1.0*#

A: intra-muscular increase of lactate; k1: constant of invasion into the 
blood compartment; k2: constant of evasion out of the blood 
compartment; BLCmax: highest BLC above the pre-test BLC; TBLCmax: 
time of BLCmax; *: significantly different to MSE10; #: significantly 
different to 4 parameter model

Table 2: 3-parameter vs. 4-parameter model to describe the BLC-response to MSE30

No Model R2 SS ((mmol l-1)2) A & A1 (mmol l-1) k1 & y1(min-1) A2 (mmol l-1) k2 & y2(min-1) F-test

1 3-Par. 0.9813 3.3496 14.9744 0.3805 0.0304
4-Par. 0.9613 3.2491 11.5457 0.4533 -1644.1026 0.0002

2 3-Par. 0.9944 1.2735 16.2805 0.4054 0.0213 #
4-Par. 0.9946 0.5160 12.5178 0.3504 -733.8497 0.0004

3 3-Par. 0.9929 1.7610 15.8388 0.5378 0.0098 #
4-Par. 0.9934 0.5882 11.1687 0.4186 -15.7730 0.0142

4 3-Par. 0.9754 2.0272 10.0625 0.6528 0.0234
4-Par. 0.9369 1.7294 6.4807 0.5995 -1935.3727 0.0001

5 3-Par. 0.9939 1.5333 18.7569 0.3780 0.0408
4-Par. 0.9899 1.2244 14.0299 0.4763 -717.1412 0.0006

6 3-Par. 0.9711 4.6991 15.1327 0.5009 0.0432
4-Par. 0.9560 3.2632 10.3104 0.5295 -3260.3276 0.0001

7 3-Par. 0.9904 1.7884 15.0838 0.6263 0.0193 #
4-Par. 0.9831 0.9845 9.8006 0.5342 -1784.7679 0.0001

8 3-Par. 0.9967 0.6126 14.7640 0.4912 0.0219
4-Par. 0.9931 0.5131 10.4533 0.5033 -977.3814 0.0003

9 3-Par. 0.9937 1.2066 15.2064 0.6656 0.0204
4-Par. 0.9880 0.7076 9.4287 0.6027 -1188.8360 0.0002

10 3-Par. 0.9932 1.6160 15.4396 0.5053 0.0126
4-Par. 0.9842 1.4673 10.9240 0.4777 -1177.0599 0.0002

11 3-Par. 0.9936 1.5344 17.1709 0.4081 0.0270
4-Par. 0.9878 1.2859 13.0576 0.4348 -2103.6627 0.0002

R2: coefficient of determination; SS: sum of squared residuals; A: extra-vascular increase of lactate (3-parameter model); A1: amplitude of the 
invasion of lactate into the blood compartment (4-parameter model); k1 or y1: rate constant of lactate invasion into the blood compartment; A2: 
amplitude of the evasion of lactate out of the blood compartment (4-parameter model); k2 or y2: rate constant of lactate evasion out of the blood 
compartment; #: significantly improved goodness of the fit using the 4-parameter model
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the BLC decrease of approx. 1650 min under MSE10- and
approx. 3450 min under MSE30-conditions combined
with extreme values of A2 (Tab. 1, 2 and 4). These extreme
parameter estimations of the 4-parameter model seem to
indicate that the use of a relatively short post exercise
period combined with the limited number of data points
were insufficient for the most successful application of the
4-parameter model, despite an excellent goodness of the
fits.

The latter may be indirectly supported by other previous
studies, which used the 4-parameter model with recovery
periods of up to 120 minutes [10,26-29]. Using the 4-
parameter model they estimated A2 values not lower than
-22.5 mmol l-1 and halftimes of the BLC decrease more or
less equivalent with k2-values estimated with the 3-param-

eter model in the present study and others [30] (Tab. 1, 2,
3).

Conclusion
The 3-parameter model and the 4-parameter model ade-
quately described the changes in BLC under MSE condi-
tions. Reduction of the number of parameters did impair
the goodness of the fit of the BLC. However, under the
given testing conditions the 3-parameter model seems to
provide more realistic parameter estimations with respect
to the elimination of lactate from the blood compartment
even at relative short periods of blood sampling.

The proposed 3-parameter model seems to provide useful
information about the dynamics of lactate in the blood
and in the extra-vascular compartment and it is sensitive
to changes in test duration.

Increase of the duration of MSE from 10 to 30 s increases
BLCmax and delays TBLCmax from approx. 5 to approx. 7
min. The latter delay is a combined effect of decreased rate
constants of lactate invasion and particularly lactate eva-
sion from the blood compartment.
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